wunderground_example.jpg
Image: Wunderground Example

The Wunderground.com website offers several creative interfaces to current and historic weather information. One of the more interesting features is the URL-based interface to personal weather stations. As far as I can tell, the Wunderground website only returns hourly data for a single day from personal weather stations... I wanted an entire year's worth of data, so it made sense to abstract the process of fetching a single day's worth of data from a named station into an R function. In this way, it is possible to quickly query the Wunderground website for arbitrary chunks of data. A semi-tested function, along with some examples are posted below. Enjoy!

Example Usage

# be sure to load the function from below first
# get a single day's worth of (hourly) data
w <- wunder_station_daily('KCAANGEL4', as.Date('2011-05-05'))

# get data for a range of dates
library(plyr)
date.range <- seq.Date(from=as.Date('2009-1-01'), to=as.Date('2011-05-06'), by='1 day')

# pre-allocate list
l <- vector(mode='list', length=length(date.range))

# loop over dates, and fetch data
for(i in seq_along(date.range))
  {
  print(date.range[i])
  l[[i]] <- wunder_station_daily('KCAANGEL4', date.range[i])
  }

# stack elements of list into DF, filling missing columns with NA
d <- ldply(l)

# save to CSV
write.csv(d, file=gzfile('KCAANGEL4.csv.gz'), row.names=FALSE)

Function Definitions

wunder_station_daily <- function(station, date)
  {
  base_url <- 'http://www.wunderground.com/weatherstation/WXDailyHistory.asp?'
 
  # parse date
  m <- as.integer(format(date, '%m'))
  d <- as.integer(format(date, '%d'))
  y <- format(date, '%Y')
 
  # compose final url
  final_url <- paste(base_url,
  'ID=', station,
  '&month=', m,
  '&day=', d,
  '&year=', y,
  '&format=1', sep='')
 
  # reading in as raw lines from the web server
  # contains <br> tags on every other line
  u <- url(final_url)
  the_data <- readLines(u)
  close(u)
 
  # only keep records with more than 5 rows of data
  if(length(the_data) > 5 )
        {
        # remove the first and last lines
        the_data <- the_data[-c(1, length(the_data))]
       
        # remove odd numbers starting from 3 --> end
        the_data <- the_data[-seq(3, length(the_data), by=2)]
       
        # extract header and cleanup
        the_header <- the_data[1]
        the_header <- make.names(strsplit(the_header, ',')[[1]])
       
        # convert to CSV, without header
        tC <- textConnection(paste(the_data, collapse='\n'))
        the_data <- read.csv(tC, as.is=TRUE, row.names=NULL, header=FALSE, skip=1)
        close(tC)
       
        # remove the last column, created by trailing comma
        the_data <- the_data[, -ncol(the_data)]
       
        # assign column names
        names(the_data) <- the_header
       
        # convert Time column into properly encoded date time
        the_data$Time <- as.POSIXct(strptime(the_data$Time, format='%Y-%m-%d %H:%M:%S'))
       
        # remove UTC and software type columns
        the_data$DateUTC.br. <- NULL
        the_data$SoftwareType <- NULL
       
        # sort and fix rownames
        the_data <- the_data[order(the_data$Time), ]
        row.names(the_data) <- 1:nrow(the_data)
       
        # done
        return(the_data)
        }
  }