Official Series Description


Lab Data Summary

Aggregate lab data for the ZACK soil series. This aggregation is based on all pedons with a current taxon name of ZACK, and applied along 1-cm thick depth slices. Solid lines are the slice-wise median, bounded on either side by the interval defined by the slice-wise 5th and 95th percentiles. The median is the value that splits the data in half. Five percent of the data are less than the 5th percentile, and five percent of the data are greater than the 95th percentile. Values along the right hand side y-axis describe the proportion of pedon data that contribute to aggregate values at this depth. For example, a value of "90%" at 25cm means that 90% of the pedons correlated to ZACK were used in the calculation. Source: KSSL snapshot . Methods used to assemble the KSSL snapshot used by SoilWeb / SDE

Click the image to view it full size.

Pedons used in the lab summary:

MLRALab IDPedon IDTaxonnameCINSSL / NASIS ReportsLink To SoilWeb GMap
87AS78TX041001S2002TX041001Zack5Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties30.6110001,-96.3481674
n/aS84TX041002S84TX041002Zack5Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Propertiesn/a

Water Balance

Monthly water balance estimated using a leaky-bucket style model for the ZACK soil series. Monthly precipitation (PPT) and potential evapotranspiration (PET) have been estimated from the 50th percentile of gridded values (PRISM 1981-2010) overlapping with the extent of SSURGO map units containing each series as a major component. Monthly PET values were estimated using the method of Thornthwaite (1948). These (and other) climatic parameters are calculated with each SSURGO refresh and provided by the fetchOSD function of the soilDB package. Representative water storage values (“AWC” in the figures) were derived from SSURGO by taking the 50th percentile of profile-total water storage (sum[awc_r * horizon thickness]) for each soil series. Note that this representation of “water storage” is based on the average ability of most plants to extract soil water between 15 bar (“permanent wilting point”) and 1/3 bar (“field capacity”) matric potential. Soil moisture state can be roughly interpreted as “dry” when storage is depleted, “moist” when storage is between 0mm and AWC, and “wet” when there is a surplus. Clearly there are a lot of assumptions baked into this kind of monthly water balance. This is still a work in progress.

Click the image to view it full size.



Click the image to view it full size.

Sibling Summary

Siblings are those soil series that occur together in map units, in this case with the ZACK series. Sketches are arranged according to their subgroup-level taxonomic structure. Source: SSURGO snapshot , parsed OSD records and snapshot of SC database .

There are insufficient data to create the sibling sketch figure.

Select annual climate data summaries for the ZACK series and siblings. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the ZACK series and siblings. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. Proportions can be interpreted as an aggregate representation of geomorphic membership. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Small Shannon entropy values suggest relatively consistent geomorphic association, while larger values suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D mountains figure.

There are insufficient data to create the 3D terrace figure.

There are insufficient data to create the 3D flats position figure.

Competing Series

Soil series competing with ZACK share the same family level classification in Soil Taxonomy. Source: parsed OSD records and snapshot of the SC database .

Click the image to view it full size.

Select annual climate data summaries for the ZACK series and competing. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the ZACK series and competing. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Proportions can be interpreted as an aggregate representation of geomorphic membership. Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Shannon entropy values close to 0 represent soil series with relatively consistent geomorphic association, while values close to 1 suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D mountains figure.

Click the image to view it full size.

There are insufficient data to create the 3D flats position figure.

Soil series sharing subgroup-level classification with ZACK, arranged according to family differentiae. Hovering over a series name will print full classification and a small sketch from the OSD. Source: snapshot of SC database .

Block Diagrams

Click a link below to display the diagram. Note that these diagrams may be from multiple survey areas.

  1. TX-2010-11-02-07 | Brazos County - 2002

    Pattern of soils and underlying material in the Zack-Boonville-Zulch general soil map unit (Soil Survey of Brazos County, Texas; 2002).

  2. TX-2010-11-02-20 | Burleson County - 2005

    Typical pattern of soils in the Zack-Zulch general soil map unit (Soil Survey of Burleson County, Texas; 2005).

  3. TX-2010-11-03-17 | Gonzales County - 2006

    Pattern of soils and underlying material in the Edge-Rosanky general soil map unit (Soil Survey of Gonzales County, Texas; 2006).

  4. TX-2010-11-03-56 | Lee County - 2007

    Landscape and parent material of the Zack-Boonville-Zulch general soil map unit (Soil Survey of Lee County, Texas; 2007).

  5. TX-2012-03-21-39 | Madison County - June 1994

    Pattern of soils and parent material in the Zack-Zulch-Boonville general soil map unit (Soil Survey of Madison County, TX; 1994).

Map Units

Map units containing ZACK as a major component. Limited to 250 records.

Map Unit Name Symbol Map Unit Area (ac) Map Unit Key National Map Unit Symbol Soil Survey Area Publication Date Map Scale
Zack fine sandy loam, 1 to 5 percent slopesZaB1177436325630n33tx04119931:20000
Zack-Urban land complex, 1 to 5 percent slopesZcB7848363260d602tx04119931:20000
Zack fine sandy loam, 5 to 8 percent slopesZaD319636325830n36tx04119931:20000
Zack fine sandy loam, 2 to 5 percent slopes, erodedZaC2173136325730n34tx04119931:20000
Zack-Urban land complex, 5 to 8 percent slopesZcD548363261d603tx04119931:20000
Zack fine sandy loam, 8 to 25 percent slopes, severely erodedZaE3270363259d601tx04119931:20000
Zack fine sandy loam, 1 to 3 percent slopesZaB2231236348430n32tx05119941:24000
Zack very fine sandy loam, 1 to 3 percent slopesZkB683936577330n39tx14919911:24000
Zack gravelly fine sandy loam, 2 to 5 percent slopesZkC302936577430n38tx14919911:24000
Zack fine sandy loam, 1 to 3 percent slopesZkB339836651830n32tx17719971:24000
Zack fine sandy loam, 1 to 5 percent slopesZaC1307936682730n33tx18519881:24000
Zack fine sandy loam, 2 to 5 percent slopes, erodedZaC2191036682830n34tx18519881:24000
Zack fine sandy loam, 1 to 5 percent slopesZaC1593871234830n33tx28720021:24000
Zack gravelly fine sandy loam, 1 to 5 percent slopesZgC771536909630n37tx28720021:24000
Zack fine sandy loam, 5 to 8 percent slopesZaD265836906430n36tx28720021:24000
Zack fine sandy loam, 1 to 5 percent slopesZaB2614137031730n33tx31319891:24000
Zack fine sandy loam, 5 to 8 percent slopesZaD603837031930n36tx31319891:24000
Zack fine sandy loam, 3 to 8 percent slopes, erodedZaC2280237031830n35tx31319891:24000
Zack-Gullied land complex, 3 to 8 percent slopesZgC3716370320dfbttx31319891:24000

Map of Series Extent

Approximate geographic distribution of the ZACK soil series. To learn more about how this distribution was mapped, or to compare this soil series extent to others, use the Series Extent Explorer (SEE) application. Source: generalization of SSURGO geometry .