Aggregate lab data for the XEROFLUVENTS soil series. This aggregation is based on all pedons with a current taxon name of XEROFLUVENTS, and applied along 1-cm thick depth slices. Solid lines are the slice-wise median, bounded on either side by the interval defined by the slice-wise 5th and 95th percentiles. The median is the value that splits the data in half. Five percent of the data are less than the 5th percentile, and five percent of the data are greater than the 95th percentile. Values along the right hand side y-axis describe the proportion of pedon data that contribute to aggregate values at this depth. For example, a value of "90%" at 25cm means that 90% of the pedons correlated to XEROFLUVENTS were used in the calculation. Source: KSSL snapshot Methods used to assemble the KSSL snapshot used by SoilWeb / SDE
.Monthly water balance estimated using a leaky-bucket style model for the XEROFLUVENTS soil series. Monthly precipitation (PPT) and potential evapotranspiration (PET) have been estimated from the 50th percentile of gridded values (PRISM 1981-2010) overlapping with the extent of SSURGO map units containing each series as a major component. Monthly PET values were estimated using the method of Thornthwaite (1948). These (and other) climatic parameters are calculated with each SSURGO refresh and provided by the fetchOSD function of the soilDB package. Representative water storage values (“AWC” in the figures) were derived from SSURGO by taking the 50th percentile of profile-total water storage (sum[awc_r * horizon thickness]) for each soil series. Note that this representation of “water storage” is based on the average ability of most plants to extract soil water between 15 bar (“permanent wilting point”) and 1/3 bar (“field capacity”) matric potential. Soil moisture state can be roughly interpreted as “dry” when storage is depleted, “moist” when storage is between 0mm and AWC, and “wet” when there is a surplus. Clearly there are a lot of assumptions baked into this kind of monthly water balance. This is still a work in progress.
Siblings are those soil series that occur together in map units, in this case with the XEROFLUVENTS series. Sketches are arranged according to their subgroup-level taxonomic structure. Source: SSURGO snapshot
, parsed OSD records and snapshot of SC database .Select annual climate data summaries for the XEROFLUVENTS series and siblings. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data
.Geomorphic description summaries for the XEROFLUVENTS series and siblings. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. Proportions can be interpreted as an aggregate representation of geomorphic membership. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Small Shannon entropy values suggest relatively consistent geomorphic association, while larger values suggest lack thereof. Source: SSURGO component records .
Soil series competing with XEROFLUVENTS share the same family level classification in Soil Taxonomy. Source: parsed OSD records
and snapshot of the SC database .Select annual climate data summaries for the XEROFLUVENTS series and competing. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data
.Geomorphic description summaries for the XEROFLUVENTS series and competing. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Proportions can be interpreted as an aggregate representation of geomorphic membership. Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Shannon entropy values close to 0 represent soil series with relatively consistent geomorphic association, while values close to 1 suggest lack thereof. Source: SSURGO component records .
Click a link below to display the diagram. Note that these diagrams may be from multiple survey areas.
Pattern of terraces in Ukiah Valley and adjacent mountains (Soil Survey of Mendocino County, Eastern Part, and Trinity County, Southwestern Part, California; 1991).
Block diagram 1.—This diagram shows the mouth of Big Chico Creek Canyon, where the creek transitions from its steeper foothill reach to its flatter Sacramento Valley reach in Bidwell Park. The creek has cut through the volcanic Tuscan Formation and is now cutting through hard Lovejoy basalt. The resistant Lovejoy basalt confines the stream channel, and a narrow slot canyon has formed at the bottom of the wider Tuscan Canyon. As the creek leaves the confinement of the slot canyon and enters the flatter topography of the valley, the energy of the water decreases, causing sediment to be deposited. As sediment fills the channel, the channel begins to move laterally. The channel slowly migrates away from the sediment deposits, allowing the sediment to form into alluvial soils (Soil Survey of Butte Area, California, Parts of Butte and Plumas Counties; 2006).
Block diagram 6.—This diagram shows the transition from the volcanic foothills to the flatter topography of the strath terraces adjacent to the Sacramento Valley. In the steeper upper reaches, the stream channels are confined on the canyon bottoms and begin to migrate laterally as the gradient decreases. As the stream channels meander with lower energy, they deposit sediment, forming various alluvial soils and landforms over time (Soil Survey of Butte Area, California, Parts of Butte and Plumas Counties; 2006).
Block diagram 8.—This diagram shows the stretch of Butte Creek Canyon where the creek has cut through volcanic flows, exposing underlying marine sedimentary rocks and Sierran metamorphic rocks. The upstream portion of the marine sedimentary rocks is conglomerate, the gravelly and cobbly facies. The downstream portion is sandstone, the sand facies. The conglomerate erodes one clast at a time and forms steep ravines. The sandstone holds water and often gives way in landslides and becomes buried by the colluvium from the rocks above (Soil Survey of Butte Area, California, Parts of Butte and Plumas Counties; 2006).
Idealized cross-section of the northwestern part of the survey area, showing soil-landscape-geology relationships (Soil Survey of San Luis Obispo County, California, Carrizo Plain Area; 2003).
Map units containing XEROFLUVENTS as a major component. Limited to 250 records.
Approximate geographic distribution of the XEROFLUVENTS soil series. To learn more about how this distribution was mapped, or to compare this soil series extent to others, use the Series Extent Explorer (SEE) application. Source: generalization of SSURGO geometry .