Official Series Description


Lab Data Summary

Aggregate lab data for the MIGUEL soil series. This aggregation is based on all pedons with a current taxon name of MIGUEL, and applied along 1-cm thick depth slices. Solid lines are the slice-wise median, bounded on either side by the interval defined by the slice-wise 5th and 95th percentiles. The median is the value that splits the data in half. Five percent of the data are less than the 5th percentile, and five percent of the data are greater than the 95th percentile. Values along the right hand side y-axis describe the proportion of pedon data that contribute to aggregate values at this depth. For example, a value of "90%" at 25cm means that 90% of the pedons correlated to MIGUEL were used in the calculation. Source: KSSL snapshot . Methods used to assemble the KSSL snapshot used by SoilWeb / SDE

Click the image to view it full size.

Pedons used in the lab summary:

MLRALab IDPedon IDTaxonnameCINSSL / NASIS ReportsLink To SoilWeb GMap
83A93P059693TX177008Miguel8Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties29.2388897,-97.7055588

Water Balance

Monthly water balance estimated using a leaky-bucket style model for the MIGUEL soil series. Monthly precipitation (PPT) and potential evapotranspiration (PET) have been estimated from the 50th percentile of gridded values (PRISM 1981-2010) overlapping with the extent of SSURGO map units containing each series as a major component. Monthly PET values were estimated using the method of Thornthwaite (1948). These (and other) climatic parameters are calculated with each SSURGO refresh and provided by the fetchOSD function of the soilDB package. Representative water storage values (“AWC” in the figures) were derived from SSURGO by taking the 50th percentile of profile-total water storage (sum[awc_r * horizon thickness]) for each soil series. Note that this representation of “water storage” is based on the average ability of most plants to extract soil water between 15 bar (“permanent wilting point”) and 1/3 bar (“field capacity”) matric potential. Soil moisture state can be roughly interpreted as “dry” when storage is depleted, “moist” when storage is between 0mm and AWC, and “wet” when there is a surplus. Clearly there are a lot of assumptions baked into this kind of monthly water balance. This is still a work in progress.

Click the image to view it full size.



Click the image to view it full size.

Sibling Summary

Siblings are those soil series that occur together in map units, in this case with the MIGUEL series. Sketches are arranged according to their subgroup-level taxonomic structure. Source: SSURGO snapshot , parsed OSD records and snapshot of SC database .

Click the image to view it full size.

Select annual climate data summaries for the MIGUEL series and siblings. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the MIGUEL series and siblings. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. Proportions can be interpreted as an aggregate representation of geomorphic membership. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Small Shannon entropy values suggest relatively consistent geomorphic association, while larger values suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D mountains figure.

Click the image to view it full size.

Click the image to view it full size.

Competing Series

Soil series competing with MIGUEL share the same family level classification in Soil Taxonomy. Source: parsed OSD records and snapshot of the SC database .

Click the image to view it full size.

Select annual climate data summaries for the MIGUEL series and competing. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the MIGUEL series and competing. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Proportions can be interpreted as an aggregate representation of geomorphic membership. Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Shannon entropy values close to 0 represent soil series with relatively consistent geomorphic association, while values close to 1 suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D mountains figure.

Click the image to view it full size.

There are insufficient data to create the 3D flats position figure.

Soil series sharing subgroup-level classification with MIGUEL, arranged according to family differentiae. Hovering over a series name will print full classification and a small sketch from the OSD. Source: snapshot of SC database .

Block Diagrams

No block diagrams are available.

Map Units

Map units containing MIGUEL as a major component. Limited to 250 records.

Map Unit Name Symbol Map Unit Area (ac) Map Unit Key National Map Unit Symbol Soil Survey Area Publication Date Map Scale
Miguel fine sandy loam, 1 to 3 percent slopes24208583625282wt0ctx01319771:24000
Miguel fine sandy loam, 1 to 3 percent slopesCfB198963904572wt0ctx02920001:24000
Miguel fine sandy loam, 0 to 1 percent slopesCfA37843904562wt09tx02920001:24000
Miguel fine sandy loam, 2 to 5 percent slopes, erodedCkC225923904582wt0ftx02920001:24000
Miguel fine sandy loam, 3 to 5 percent slopesMgC64613650732wt0dtx12319731:20000
Miguel fine sandy loam, 2 to 5 percent slopes, erodedMgC235093650742wt0ftx12319731:20000
Miguel very fine sandy loam, 1 to 3 percent slopesMgB11304366002d8vjtx16319851:24000
Miguel very fine sandy loam, 0 to 1 percent slopesMgA7133366001d8vhtx16319851:24000
Miguel fine sandy loam, warm, 1 to 3 percent slopes2377943681052t12vtx24919761:24000
Miguel fine sandy loam, 1 to 3 percent slopesMgB99043684102wt0ctx25519921:24000
Miguel fine sandy loam, 3 to 5 percent slopesMgC15613684112wt0dtx25519921:24000
Miguel fine sandy loam, 0 to 1 percent slopesMgA92373705622wt09tx32519721:24000
Miguel fine sandy loam, 1 to 3 percent slopesMgB29873705632wt0ctx32519721:24000
Miguel fine sandy loam, warm, 1 to 3 percent slopesMgB30513710562t12vtx35519631:20000
Miguel fine sandy loam, 0 to 1 percent slopesMgA2142371055dg3jtx35519631:20000
Miguel fine sandy loam, 3 to 5 percent slopesMgC693371057dg3ltx35519631:20000
Miguel fine sandy loam, 1 to 3 percent slopesMgB385173736122wt0ctx49319721:24000
Miguel fine sandy loam, 0 to 1 percent slopesMgA80833736112wt09tx49319721:24000
Miguel fine sandy loam, 2 to 5 percent slopes, erodedMgC233633736142wt0ftx49319721:24000
Miguel fine sandy loam, 3 to 5 percent slopesMgC13233736132wt0dtx49319721:24000

Map of Series Extent

Approximate geographic distribution of the MIGUEL soil series. To learn more about how this distribution was mapped, or to compare this soil series extent to others, use the Series Extent Explorer (SEE) application. Source: generalization of SSURGO geometry .