Official Series Description


Lab Data Summary

Aggregate lab data for the MASSIE soil series. This aggregation is based on all pedons with a current taxon name of MASSIE, and applied along 1-cm thick depth slices. Solid lines are the slice-wise median, bounded on either side by the interval defined by the slice-wise 5th and 95th percentiles. The median is the value that splits the data in half. Five percent of the data are less than the 5th percentile, and five percent of the data are greater than the 95th percentile. Values along the right hand side y-axis describe the proportion of pedon data that contribute to aggregate values at this depth. For example, a value of "90%" at 25cm means that 90% of the pedons correlated to MASSIE were used in the calculation. Source: KSSL snapshot . Methods used to assemble the KSSL snapshot used by SoilWeb / SDE

There are insufficient data to create the lab data summary figure.

Pedons used in the lab summary:

MLRALab IDPedon IDTaxonnameCINSSL / NASIS ReportsLink To SoilWeb GMap
n/aHY-S251955-OH071-S25Massie2Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Propertiesn/a
n/aHY-s261955-OH071-S26Massie2Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Propertiesn/a

Water Balance

Monthly water balance estimated using a leaky-bucket style model for the MASSIE soil series. Monthly precipitation (PPT) and potential evapotranspiration (PET) have been estimated from the 50th percentile of gridded values (PRISM 1981-2010) overlapping with the extent of SSURGO map units containing each series as a major component. Monthly PET values were estimated using the method of Thornthwaite (1948). These (and other) climatic parameters are calculated with each SSURGO refresh and provided by the fetchOSD function of the soilDB package. Representative water storage values (“AWC” in the figures) were derived from SSURGO by taking the 50th percentile of profile-total water storage (sum[awc_r * horizon thickness]) for each soil series. Note that this representation of “water storage” is based on the average ability of most plants to extract soil water between 15 bar (“permanent wilting point”) and 1/3 bar (“field capacity”) matric potential. Soil moisture state can be roughly interpreted as “dry” when storage is depleted, “moist” when storage is between 0mm and AWC, and “wet” when there is a surplus. Clearly there are a lot of assumptions baked into this kind of monthly water balance. This is still a work in progress.

Click the image to view it full size.



Click the image to view it full size.

Sibling Summary

Siblings are those soil series that occur together in map units, in this case with the MASSIE series. Sketches are arranged according to their subgroup-level taxonomic structure. Source: SSURGO snapshot , parsed OSD records and snapshot of SC database .

There are insufficient data to create the sibling sketch figure.

Select annual climate data summaries for the MASSIE series and siblings. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the MASSIE series and siblings. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. Proportions can be interpreted as an aggregate representation of geomorphic membership. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Small Shannon entropy values suggest relatively consistent geomorphic association, while larger values suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D mountains figure.

Click the image to view it full size.

Click the image to view it full size.

Competing Series

Soil series competing with MASSIE share the same family level classification in Soil Taxonomy. Source: parsed OSD records and snapshot of the SC database .

Click the image to view it full size.

Select annual climate data summaries for the MASSIE series and competing. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the MASSIE series and competing. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Proportions can be interpreted as an aggregate representation of geomorphic membership. Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Shannon entropy values close to 0 represent soil series with relatively consistent geomorphic association, while values close to 1 suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D mountains figure.

Click the image to view it full size.

Click the image to view it full size.

Soil series sharing subgroup-level classification with MASSIE, arranged according to family differentiae. Hovering over a series name will print full classification and a small sketch from the OSD. Source: snapshot of SC database .

Block Diagrams

Click a link below to display the diagram. Note that these diagrams may be from multiple survey areas.

  1. NE-2012-02-10-10 | Clay County - March 1981

    Typical pattern of soils in the Hastings-Crete-Butler association showing the relationship of the soils to topography and parent material (Soil Survey of Clay County, Nebraska; March 1981).

  2. NE-2012-02-10-12 | Clay County - March 1981

    Typical pattern of soils in the Hastings-Massie association showing the relationship of the soils to topography and parent material (Soil Survey of Clay County, Nebraska; March 1981).

  3. NE-2012-02-10-30 | Fillmore County - July 1986

    Typical pattern of soils, topography, and parent material in the Hastings-Crete association (Soil Survey of Fillmore County, Nebraska; July 1986).

  4. NE-2012-02-10-32 | Fillmore County - July 1986

    Typical pattern of soils, topography, and parent material in the Crete-Butler association (Soil Survey of Fillmore County, Nebraska; July 1986).

Map Units

Map units containing MASSIE as a major component. Limited to 250 records.

Map Unit Name Symbol Map Unit Area (ac) Map Unit Key National Map Unit Symbol Soil Survey Area Publication Date Map Scale
Massie silt loam, frequently ponded373024416919271tsl9ne00119701:20000
Massie silty clay loam, frequently ponded37313526058342qsk0ne00119701:20000
Massie silty clay loam, frequently ponded3731301626058352qsk0ne03519791:20000
Massie silty clay loam, frequently ponded3731199926058362qsk0ne05919841:20000
Massie silt loam, frequently ponded373033116921781tsvdne08119821:20000
Massie silty clay loam, frequently ponded373117426058372qsk0ne08319671:20000
Massie silty clay loam, frequently ponded3731100026058382qsk0ne09919821:20000
Massie silty clay loam, frequently ponded373123826058392qsk0ne12919741:20000
Massie silty clay loam, frequently ponded3731124926058402qsk0ne13719671:20000
Massie silty clay loam, frequently ponded373120426058412qsk0ne15919671:20000
Massie silty clay loam, frequently ponded373113826058422qsk0ne18119671:20000
Massie silty clay loam, frequently ponded3731100526058432qsk0ne18519741:20000

Map of Series Extent

Approximate geographic distribution of the MASSIE soil series. To learn more about how this distribution was mapped, or to compare this soil series extent to others, use the Series Extent Explorer (SEE) application. Source: generalization of SSURGO geometry .