Aggregate lab data for the LOBDELL soil series. This aggregation is based on all pedons with a current taxon name of LOBDELL, and applied along 1-cm thick depth slices. Solid lines are the slice-wise median, bounded on either side by the interval defined by the slice-wise 5th and 95th percentiles. The median is the value that splits the data in half. Five percent of the data are less than the 5th percentile, and five percent of the data are greater than the 95th percentile. Values along the right hand side y-axis describe the proportion of pedon data that contribute to aggregate values at this depth. For example, a value of "90%" at 25cm means that 90% of the pedons correlated to LOBDELL were used in the calculation. Source: KSSL snapshot Methods used to assemble the KSSL snapshot used by SoilWeb / SDE
.Pedons used in the lab summary:
Monthly water balance estimated using a leaky-bucket style model for the LOBDELL soil series. Monthly precipitation (PPT) and potential evapotranspiration (PET) have been estimated from the 50th percentile of gridded values (PRISM 1981-2010) overlapping with the extent of SSURGO map units containing each series as a major component. Monthly PET values were estimated using the method of Thornthwaite (1948). These (and other) climatic parameters are calculated with each SSURGO refresh and provided by the fetchOSD function of the soilDB package. Representative water storage values (“AWC” in the figures) were derived from SSURGO by taking the 50th percentile of profile-total water storage (sum[awc_r * horizon thickness]) for each soil series. Note that this representation of “water storage” is based on the average ability of most plants to extract soil water between 15 bar (“permanent wilting point”) and 1/3 bar (“field capacity”) matric potential. Soil moisture state can be roughly interpreted as “dry” when storage is depleted, “moist” when storage is between 0mm and AWC, and “wet” when there is a surplus. Clearly there are a lot of assumptions baked into this kind of monthly water balance. This is still a work in progress.
Siblings are those soil series that occur together in map units, in this case with the LOBDELL series. Sketches are arranged according to their subgroup-level taxonomic structure. Source: SSURGO snapshot
, parsed OSD records and snapshot of SC database .Select annual climate data summaries for the LOBDELL series and siblings. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data
.Geomorphic description summaries for the LOBDELL series and siblings. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. Proportions can be interpreted as an aggregate representation of geomorphic membership. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Small Shannon entropy values suggest relatively consistent geomorphic association, while larger values suggest lack thereof. Source: SSURGO component records .
Soil series competing with LOBDELL share the same family level classification in Soil Taxonomy. Source: parsed OSD records
and snapshot of the SC database .Select annual climate data summaries for the LOBDELL series and competing. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data
.Geomorphic description summaries for the LOBDELL series and competing. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Proportions can be interpreted as an aggregate representation of geomorphic membership. Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Shannon entropy values close to 0 represent soil series with relatively consistent geomorphic association, while values close to 1 suggest lack thereof. Source: SSURGO component records .
Click a link below to display the diagram. Note that these diagrams may be from multiple survey areas.
A schematic drawing showing the relationship of soils on the Wisconsin glacial outwash plain (in the valley to the right) and on the Wisconsin till plain (Soil Survey of Columbiana County, Ohio; February 1968).
Typical pattern of soils and parent material in the Bennington-Cardington-Condit association (Soil Survey of Huron County, Ohio; June 1994).
Typical pattern of soils and underlying material in the Hagerstown-Clarksburg-Opequon general soil map unit (Soil Survey of Bedford County, PA; 1998).
Typical pattern of soils and underlying material in the Westmoreland-Edom-Opequon general soil map unit (Soil Survey of Bedford County, PA; 1998).
Typical pattern of soils and underlying material in the Hublersburg-Murrill-Opequon association (Soil Survey of Blair County, PA; 1981).
Typical pattern of soils that are underlain with limestone. The soils named on the land surface are shown in their natural relationship to each other and in their relationship to parent material and landform position (Soil Survey of Lee County, Virginia; 2006).
Diagram of a sequence of landform positions in areas underlain with limestone, shale, and sandstone in Russell County. The soils named on the land surface are shown in their natural relationship to each other and in their relationship to landform position (Soil Survey of Russell County, Virginia; 2007).
Diagram of a sequence of landform positions along the Clinch River in areas underlain with limestone and shale in Russell County. The soils named on the land surface are shown in their natural relationship to each other and in their relationship to landform position (Soil Survey of Russell County, Virginia; 2007).
Typical pattern of soils that are underlain with limestone. The soils named on the land surface are shown in their natural relationship to each other and in their relationship to parent material and landform position (Soil Survey of Lee County, Virginia; 2006).
Diagram of a sequence of landform positions along the Clinch River in areas underlain with limestone and shale in Russell County. The soils named on the land surface are shown in their natural relationship to each other and in their relationship to landform position (Soil Survey of Russell County, Virginia; 2007).
Diagram of a sequence of landform positions in areas underlain with limestone, shale, and sandstone in Russell County. The soils named on the land surface are shown in their natural relationship to each other and in their relationship to landform position (Soil Survey of Russell County, Virginia; 2007).
The dominant upland and high terrace soils in the Upper Flats area of northern Mason County. These high terrace soils have their origins associated with the ancient Teays River system (Soil Survey of Jackson and Mason Counties, West Virginia).
Typical pattern of soils and parent material in the Kaymine-Cedarcreek-Dekalb general soil map unit (Soil Survey of Boone County, WV; 1994).
Map units containing LOBDELL as a major component. Limited to 250 records.
Approximate geographic distribution of the LOBDELL soil series. To learn more about how this distribution was mapped, or to compare this soil series extent to others, use the Series Extent Explorer (SEE) application. Source: generalization of SSURGO geometry .