Official Series Description


Lab Data Summary

Aggregate lab data for the GRIFFGULCH soil series. This aggregation is based on all pedons with a current taxon name of GRIFFGULCH, and applied along 1-cm thick depth slices. Solid lines are the slice-wise median, bounded on either side by the interval defined by the slice-wise 5th and 95th percentiles. The median is the value that splits the data in half. Five percent of the data are less than the 5th percentile, and five percent of the data are greater than the 95th percentile. Values along the right hand side y-axis describe the proportion of pedon data that contribute to aggregate values at this depth. For example, a value of "90%" at 25cm means that 90% of the pedons correlated to GRIFFGULCH were used in the calculation. Source: KSSL snapshot . Methods used to assemble the KSSL snapshot used by SoilWeb / SDE

Click the image to view it full size.

Pedons used in the lab summary:

MLRALab IDPedon IDTaxonnameCINSSL / NASIS ReportsLink To SoilWeb GMap
22A98P029197CA612024GRIFFGULCH6Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties39.7908611,-121.5508611

Water Balance

Monthly water balance estimated using a leaky-bucket style model for the GRIFFGULCH soil series. Monthly precipitation (PPT) and potential evapotranspiration (PET) have been estimated from the 50th percentile of gridded values (PRISM 1981-2010) overlapping with the extent of SSURGO map units containing each series as a major component. Monthly PET values were estimated using the method of Thornthwaite (1948). These (and other) climatic parameters are calculated with each SSURGO refresh and provided by the fetchOSD function of the soilDB package. Representative water storage values (“AWC” in the figures) were derived from SSURGO by taking the 50th percentile of profile-total water storage (sum[awc_r * horizon thickness]) for each soil series. Note that this representation of “water storage” is based on the average ability of most plants to extract soil water between 15 bar (“permanent wilting point”) and 1/3 bar (“field capacity”) matric potential. Soil moisture state can be roughly interpreted as “dry” when storage is depleted, “moist” when storage is between 0mm and AWC, and “wet” when there is a surplus. Clearly there are a lot of assumptions baked into this kind of monthly water balance. This is still a work in progress.

Click the image to view it full size.



Click the image to view it full size.

Sibling Summary

Siblings are those soil series that occur together in map units, in this case with the GRIFFGULCH series. Sketches are arranged according to their subgroup-level taxonomic structure. Source: SSURGO snapshot , parsed OSD records and snapshot of SC database .

Click the image to view it full size.

Select annual climate data summaries for the GRIFFGULCH series and siblings. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the GRIFFGULCH series and siblings. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. Proportions can be interpreted as an aggregate representation of geomorphic membership. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Small Shannon entropy values suggest relatively consistent geomorphic association, while larger values suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D terrace figure.

There are insufficient data to create the 3D flats position figure.

Competing Series

Soil series competing with GRIFFGULCH share the same family level classification in Soil Taxonomy. Source: parsed OSD records and snapshot of the SC database .

Click the image to view it full size.

Select annual climate data summaries for the GRIFFGULCH series and competing. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the GRIFFGULCH series and competing. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Proportions can be interpreted as an aggregate representation of geomorphic membership. Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Shannon entropy values close to 0 represent soil series with relatively consistent geomorphic association, while values close to 1 suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D terrace figure.

There are insufficient data to create the 3D flats position figure.

Soil series sharing subgroup-level classification with GRIFFGULCH, arranged according to family differentiae. Hovering over a series name will print full classification and a small sketch from the OSD. Source: snapshot of SC database .

Block Diagrams

Click a link below to display the diagram. Note that these diagrams may be from multiple survey areas.

  1. CA-2012-05-08-06 | Butte Area, Parts of Butte and Plumas Counties - 2006

    Block diagram 5.—This diagram shows the relationships between the Cascade volcanic flows and the metamorphic and granitic Sierra Nevada rocks. The flatter volcanic flows on the left buried the folded metamorphic rocks in the middle. The uniform intrusive igneous rocks weather to soils that are less resistant to geologic erosion and produce subtle, more evenly developed relief (Soil Survey of Butte Area, California, Parts of Butte and Plumas Counties; 2006).

Map Units

Map units containing GRIFFGULCH as a major component. Limited to 250 records.

Map Unit Name Symbol Map Unit Area (ac) Map Unit Key National Map Unit Symbol Soil Survey Area Publication Date Map Scale
Griffgulch-Surnuf-Spine taxadjunct , 30 to 50 percent slopes7184110461251hgz2ca61220051:24000
Griffgulch-Surnuf , 15 to 30 percent slopes7171573461252hgz3ca61220051:24000
Surnuf taxadjunct-Griffgulch , 15 to 30 percent slopes5811454461518hh7pca61220051:24000
Griffgulch-Surnuf-Spine taxadjunct , 50 to 70 percent slopes7191422461250hgz1ca61220051:24000
Surnuf taxadjunct-Griffgulch , 50 to 70 percent slopes583769461516hh7mca61220051:24000
Surnuf taxadjunct-Griffgulch , 30 to 50 percent slopes582641461517hh7nca61220051:24000
Surnuf taxadjunct-Griffgulch-Rock outcrop , 2 to 15 percent slopes580524461519hh7qca61220051:24000
Griffgulch-Surnuf , 3 to 15 percent slopes716269461253hgz4ca61220051:24000

Map of Series Extent

Approximate geographic distribution of the GRIFFGULCH soil series. To learn more about how this distribution was mapped, or to compare this soil series extent to others, use the Series Extent Explorer (SEE) application. Source: generalization of SSURGO geometry .