Official Series Description


Lab Data Summary

Aggregate lab data for the GRAUFELS soil series. This aggregation is based on all pedons with a current taxon name of GRAUFELS, and applied along 1-cm thick depth slices. Solid lines are the slice-wise median, bounded on either side by the interval defined by the slice-wise 5th and 95th percentiles. The median is the value that splits the data in half. Five percent of the data are less than the 5th percentile, and five percent of the data are greater than the 95th percentile. Values along the right hand side y-axis describe the proportion of pedon data that contribute to aggregate values at this depth. For example, a value of "90%" at 25cm means that 90% of the pedons correlated to GRAUFELS were used in the calculation. Source: KSSL snapshot . Methods used to assemble the KSSL snapshot used by SoilWeb / SDE

Click the image to view it full size.

Pedons used in the lab summary:

MLRALab IDPedon IDTaxonnameCINSSL / NASIS ReportsLink To SoilWeb GMap
22A79P0466S1979NV031004Graufels6Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties39.2332306,-119.8429489

Water Balance

Monthly water balance estimated using a leaky-bucket style model for the GRAUFELS soil series. Monthly precipitation (PPT) and potential evapotranspiration (PET) have been estimated from the 50th percentile of gridded values (PRISM 1981-2010) overlapping with the extent of SSURGO map units containing each series as a major component. Monthly PET values were estimated using the method of Thornthwaite (1948). These (and other) climatic parameters are calculated with each SSURGO refresh and provided by the fetchOSD function of the soilDB package. Representative water storage values (“AWC” in the figures) were derived from SSURGO by taking the 50th percentile of profile-total water storage (sum[awc_r * horizon thickness]) for each soil series. Note that this representation of “water storage” is based on the average ability of most plants to extract soil water between 15 bar (“permanent wilting point”) and 1/3 bar (“field capacity”) matric potential. Soil moisture state can be roughly interpreted as “dry” when storage is depleted, “moist” when storage is between 0mm and AWC, and “wet” when there is a surplus. Clearly there are a lot of assumptions baked into this kind of monthly water balance. This is still a work in progress.

Click the image to view it full size.



Click the image to view it full size.

Sibling Summary

Siblings are those soil series that occur together in map units, in this case with the GRAUFELS series. Sketches are arranged according to their subgroup-level taxonomic structure. Source: SSURGO snapshot , parsed OSD records and snapshot of SC database .

Click the image to view it full size.

Select annual climate data summaries for the GRAUFELS series and siblings. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the GRAUFELS series and siblings. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. Proportions can be interpreted as an aggregate representation of geomorphic membership. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Small Shannon entropy values suggest relatively consistent geomorphic association, while larger values suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D flats position figure.

Competing Series

Soil series competing with GRAUFELS share the same family level classification in Soil Taxonomy. Source: parsed OSD records and snapshot of the SC database .

Click the image to view it full size.

Select annual climate data summaries for the GRAUFELS series and competing. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the GRAUFELS series and competing. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Proportions can be interpreted as an aggregate representation of geomorphic membership. Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Shannon entropy values close to 0 represent soil series with relatively consistent geomorphic association, while values close to 1 suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

Click the image to view it full size.

Click the image to view it full size.

Click the image to view it full size.

Soil series sharing subgroup-level classification with GRAUFELS, arranged according to family differentiae. Hovering over a series name will print full classification and a small sketch from the OSD. Source: snapshot of SC database .

Block Diagrams

No block diagrams are available.

Map Units

Map units containing GRAUFELS as a major component. Limited to 250 records.

Map Unit Name Symbol Map Unit Area (ac) Map Unit Key National Map Unit Symbol Soil Survey Area Publication Date Map Scale
Glenbrook-Graufels-Rock outcrop complex, 30 to 60 percent slopes22917682487522jc9jca60820001:24000
Graufels-Glenbrook complex, 5 to 30 percent slopes2303434487524jc9lca60820001:24000
Indiano-Graufels association, 15 to 30 percent slopes2531603487552jcbhca60820001:24000
Graufels-Rock outcrop complex, 8 to 50 percent slopes491357232792w4cnca61419671:24000
Graufels-Glenbrook complex, 5 to 30 percent slopes2303748339t3pzca61419671:24000
Glenbrook-Graufels-Rock outcrop complex, 30 to 60 percent slopes229su199615460811nwtlca71319841:24000
Indiano-Graufels association, 15 to 30 percent slopes253su1815460561nwssca71319841:24000
Graufels-Glenbrook complex, 8 to 50 percent slopes49312101474306hxk6nv62819801:24000
Graufels-Glenbrook-Haypress association49611526474309hxk9nv62819801:24000
Graufels-Glenbrook-Rock outcrop complex, 4 to 15 percent slopes4954311474308hxk8nv62819801:24000
Graufels-Rock outcrop complex, 8 to 50 percent slopes49133744743042w4cnnv62819801:24000
Graufels bouldery sand, 8 to 15 percent slopes4901977474303hxk3nv62819801:24000
Graufels bouldery sand, 15 to 30 percent slopes4921173474305hxk5nv62819801:24000
Graufels-Glenbrook association497914474436hxpdnv62819801:24000
Graufels gravelly loamy coarse sand, 4 to 8 percent slopes494799474307hxk7nv62819801:24000
Roloc-Graufels-Glenbrook association15606174744532w4fbnv62819801:24000
Roloc-Graufels-Glenbrook association100141824628102w4fbnv62919751:24000
Glenbrook-Graufels-Rock outcrop association11604700477306j0nznv77119901:24000
Graufels-Glenbrook association7024276477541j0xknv77119901:24000
Glenbrook-Graufels complex, 8 to 50 percent slopes6993820644588pmr5nv77319811:24000

Map of Series Extent

Approximate geographic distribution of the GRAUFELS soil series. To learn more about how this distribution was mapped, or to compare this soil series extent to others, use the Series Extent Explorer (SEE) application. Source: generalization of SSURGO geometry .