Official Series Description


Lab Data Summary

Aggregate lab data for the GOODMAN soil series. This aggregation is based on all pedons with a current taxon name of GOODMAN, and applied along 1-cm thick depth slices. Solid lines are the slice-wise median, bounded on either side by the interval defined by the slice-wise 5th and 95th percentiles. The median is the value that splits the data in half. Five percent of the data are less than the 5th percentile, and five percent of the data are greater than the 95th percentile. Values along the right hand side y-axis describe the proportion of pedon data that contribute to aggregate values at this depth. For example, a value of "90%" at 25cm means that 90% of the pedons correlated to GOODMAN were used in the calculation. Source: KSSL snapshot . Methods used to assemble the KSSL snapshot used by SoilWeb / SDE

Click the image to view it full size.

Pedons used in the lab summary:

MLRALab IDPedon IDTaxonnameCINSSL / NASIS ReportsLink To SoilWeb GMap
90A79P039379WI085007Goodman7Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties45.6138878,-89.1086121
90A85P025084WI075005Goodman6Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties45.7133331,-88.336113
90A90P0904S1990WI041008GOODMAN6Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties45.4669456,-88.5858307
90A90P0905S1990WI041009GOODMAN6Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties45.4669456,-88.5858307

Water Balance

Monthly water balance estimated using a leaky-bucket style model for the GOODMAN soil series. Monthly precipitation (PPT) and potential evapotranspiration (PET) have been estimated from the 50th percentile of gridded values (PRISM 1981-2010) overlapping with the extent of SSURGO map units containing each series as a major component. Monthly PET values were estimated using the method of Thornthwaite (1948). These (and other) climatic parameters are calculated with each SSURGO refresh and provided by the fetchOSD function of the soilDB package. Representative water storage values (“AWC” in the figures) were derived from SSURGO by taking the 50th percentile of profile-total water storage (sum[awc_r * horizon thickness]) for each soil series. Note that this representation of “water storage” is based on the average ability of most plants to extract soil water between 15 bar (“permanent wilting point”) and 1/3 bar (“field capacity”) matric potential. Soil moisture state can be roughly interpreted as “dry” when storage is depleted, “moist” when storage is between 0mm and AWC, and “wet” when there is a surplus. Clearly there are a lot of assumptions baked into this kind of monthly water balance. This is still a work in progress.

Click the image to view it full size.



Click the image to view it full size.

Sibling Summary

Siblings are those soil series that occur together in map units, in this case with the GOODMAN series. Sketches are arranged according to their subgroup-level taxonomic structure. Source: SSURGO snapshot , parsed OSD records and snapshot of SC database .

Click the image to view it full size.

Select annual climate data summaries for the GOODMAN series and siblings. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the GOODMAN series and siblings. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. Proportions can be interpreted as an aggregate representation of geomorphic membership. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Small Shannon entropy values suggest relatively consistent geomorphic association, while larger values suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D mountains figure.

Click the image to view it full size.

Click the image to view it full size.

Competing Series

Soil series competing with GOODMAN share the same family level classification in Soil Taxonomy. Source: parsed OSD records and snapshot of the SC database .

Click the image to view it full size.

Select annual climate data summaries for the GOODMAN series and competing. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the GOODMAN series and competing. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Proportions can be interpreted as an aggregate representation of geomorphic membership. Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Shannon entropy values close to 0 represent soil series with relatively consistent geomorphic association, while values close to 1 suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

Click the image to view it full size.

There are insufficient data to create the 3D mountains figure.

Click the image to view it full size.

Click the image to view it full size.

Soil series sharing subgroup-level classification with GOODMAN, arranged according to family differentiae. Hovering over a series name will print full classification and a small sketch from the OSD. Source: snapshot of SC database .

Block Diagrams

Click a link below to display the diagram. Note that these diagrams may be from multiple survey areas.

  1. MI-2010-09-07-16 | Marquette County - 2007

    Typical pattern of soils and parent material in the Goodman-Sundog-Greenwood association (Soil Survey of Marquette County, Michigan; 2007).

  2. WI-2012-03-23-17 | Marinette County - February 1991

    Pattern of soils and parent material in the Sarona-Keweenaw association (Soil Survey of Marinette County, WI; 1991).

Map Units

Map units containing GOODMAN as a major component. Limited to 250 records.

Map Unit Name Symbol Map Unit Area (ac) Map Unit Key National Map Unit Symbol Soil Survey Area Publication Date Map Scale
Wabeno-Goodman silt loams, 6 to 15 percent slopes, very stony15C18414560172tnzvmi05320071:24000
Wabeno-Goodman silt loams, 6 to 15 percent slopes, very stony116D444554158812tnzvmi07119921:20000
Soperton-Goodman silt loams, 15 to 35 percent slopes, very stony166F85304159022tnzwmi07119921:20000
Goodman-Wabeno-Sundog, sandy substratum complex, 6 to 18 percent slopes, stony128D6157415895fyrzmi07119921:20000
Goodman-Wabeno-Sundog, sandy substratum complex, 1 to 6 percent slopes, stony128B4076415894fyrymi07119921:20000
Goodman-Sundog, sandy substratum complex, 18 to 45 percent slopes, stony128F1736415896fys0mi07119921:20000
Goodman silt loam, 1 to 18 percent slopes, rocky, very stony127D388415893fyrxmi07119921:20000
Goodman-Sundog silt loams, 6 to 18 percent slopes, bouldery107D8371394963f7zrmi10319991:24000
Goodman-Sundog silt loams, 18 to 45 percent slopes, bouldery107F7509394965f7ztmi10319991:24000
Goodman-Sundog-Wabeno silt loams, 6 to 18 percent slopes, bouldery108D3943394967f7zwmi10319991:24000
Goodman-Sundog-Wabeno silt loams, 1 to 6 percent slopes, bouldery108B1976394966f7zvmi10319991:24000
Goodman-Sundog silt loams, 1 to 6 percent slopes, bouldery107B1899394962f7zqmi10319991:24000
Stambaugh-Goodman silt loams, 6 to 15 percent slopes, very stonySuC3463430055gfhrwi03719951:12000
Goodman silt loam, 6 to 15 percent slopes, very stonyGmC3070430007gfg6wi03719951:12000
Wabeno-Goodman silt loams, 6 to 15 percent slopes, very stonyWaC21904300642tnzvwi03719951:12000
Stambaugh-Goodman silt loams, 15 to 35 percent slopes, very stonySuD843430056gfhswi03719951:12000
Soperton-Goodman silt loams, 15 to 35 percent slopes, very stonySoD7824300522tnzwwi03719951:12000
Goodman silt loam, 15 to 25 percent slopes, very stonyGmD629430008gfg7wi03719951:12000
Wabeno-Goodman silt loams, 6 to 15 percent slopes, very stonyWaC366984298792tnzvwi04119951:12000
Soperton-Goodman silt loams, 15 to 35 percent slopes, very stonySoD138834298682tnzwwi04119951:12000
Goodman silt loam, 6 to 15 percent slopesGoC3954431620gh47wi06919931:20000
Goodman silt loam, 2 to 6 percent slopesGmB3887422399g5jswi07519871:20000
Goodman silt loam, 6 to 15 percent slopesGmC1448422400g5jtwi07519871:20000
Padus-Goodman complex, 6 to 15 percent slopes, stonyPbC13161421105g461wi08519881:20000
Goodman silt loam, 1 to 6 percent slopes, stonyGoB9873421086g45fwi08519881:20000
Goodman silt loam, 6 to 15 percent slopes, stonyGoC8381421087g45gwi08519881:20000
Padus-Goodman complex, 15 to 25 percent slopes, stonyPbD6039421106g462wi08519881:20000
Padus-Goodman complex, 1 to 6 percent slopes, stonyPbB5602421104g460wi08519881:20000
Goodman silt loam, 15 to 25 percent slopes, stonyGoD2021421088g45hwi08519881:20000

Map of Series Extent

Approximate geographic distribution of the GOODMAN soil series. To learn more about how this distribution was mapped, or to compare this soil series extent to others, use the Series Extent Explorer (SEE) application. Source: generalization of SSURGO geometry .