Official Series Description


Lab Data Summary

Aggregate lab data for the CULLISON soil series. This aggregation is based on all pedons with a current taxon name of CULLISON, and applied along 1-cm thick depth slices. Solid lines are the slice-wise median, bounded on either side by the interval defined by the slice-wise 5th and 95th percentiles. The median is the value that splits the data in half. Five percent of the data are less than the 5th percentile, and five percent of the data are greater than the 95th percentile. Values along the right hand side y-axis describe the proportion of pedon data that contribute to aggregate values at this depth. For example, a value of "90%" at 25cm means that 90% of the pedons correlated to CULLISON were used in the calculation. Source: KSSL snapshot . Methods used to assemble the KSSL snapshot used by SoilWeb / SDE

Click the image to view it full size.

Pedons used in the lab summary:

MLRALab IDPedon IDTaxonnameCINSSL / NASIS ReportsLink To SoilWeb GMap
6590P051289NE031036Cullison7Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties42.8875008,-101.9505539
6590P051389NE031039Cullison7Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties42.8861122,-101.9422226
6590P051489NE031040Cullison7Primary | Supplementary | Taxonomy | Pedon | Water Retention | Correlation | Andic Soil Properties42.8877792,-101.9561081

Water Balance

Monthly water balance estimated using a leaky-bucket style model for the CULLISON soil series. Monthly precipitation (PPT) and potential evapotranspiration (PET) have been estimated from the 50th percentile of gridded values (PRISM 1981-2010) overlapping with the extent of SSURGO map units containing each series as a major component. Monthly PET values were estimated using the method of Thornthwaite (1948). These (and other) climatic parameters are calculated with each SSURGO refresh and provided by the fetchOSD function of the soilDB package. Representative water storage values (“AWC” in the figures) were derived from SSURGO by taking the 50th percentile of profile-total water storage (sum[awc_r * horizon thickness]) for each soil series. Note that this representation of “water storage” is based on the average ability of most plants to extract soil water between 15 bar (“permanent wilting point”) and 1/3 bar (“field capacity”) matric potential. Soil moisture state can be roughly interpreted as “dry” when storage is depleted, “moist” when storage is between 0mm and AWC, and “wet” when there is a surplus. Clearly there are a lot of assumptions baked into this kind of monthly water balance. This is still a work in progress.

Click the image to view it full size.



Click the image to view it full size.

Sibling Summary

Siblings are those soil series that occur together in map units, in this case with the CULLISON series. Sketches are arranged according to their subgroup-level taxonomic structure. Source: SSURGO snapshot , parsed OSD records and snapshot of SC database .

Click the image to view it full size.

Select annual climate data summaries for the CULLISON series and siblings. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

Click the image to view it full size.

Geomorphic description summaries for the CULLISON series and siblings. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. Proportions can be interpreted as an aggregate representation of geomorphic membership. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Small Shannon entropy values suggest relatively consistent geomorphic association, while larger values suggest lack thereof. Source: SSURGO component records .

Click the image to view it full size.

There are insufficient data to create the 3D hills figure.

There are insufficient data to create the 3D mountains figure.

Click the image to view it full size.

Click the image to view it full size.

Competing Series

Soil series competing with CULLISON share the same family level classification in Soil Taxonomy. Source: parsed OSD records and snapshot of the SC database .

Click the image to view it full size.

Select annual climate data summaries for the CULLISON series and competing. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .

There are insufficient data to create the annual climate figure.

Geomorphic description summaries for the CULLISON series and competing. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Proportions can be interpreted as an aggregate representation of geomorphic membership. Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Shannon entropy values close to 0 represent soil series with relatively consistent geomorphic association, while values close to 1 suggest lack thereof. Source: SSURGO component records .

There are insufficient data to create the 2D hillslope position figure.

There are insufficient data to create the 3D hills figure.

There are insufficient data to create the 3D mountains figure.

There are insufficient data to create the 3D terrace figure.

There are insufficient data to create the 3D flats position figure.

Soil series sharing subgroup-level classification with CULLISON, arranged according to family differentiae. Hovering over a series name will print full classification and a small sketch from the OSD. Source: snapshot of SC database .

Block Diagrams

Click a link below to display the diagram. Note that these diagrams may be from multiple survey areas.

  1. NE-2012-02-13-39 | Keith County - November 1995

    Typical pattern of soils and parent material in the Valent association (Soil Survey of Keith County, Nebraska; November 1995).

Map Units

Map units containing CULLISON as a major component. Limited to 250 records.

Map Unit Name Symbol Map Unit Area (ac) Map Unit Key National Map Unit Symbol Soil Survey Area Publication Date Map Scale
Cullison mucky peat446347724347262ymc6ne00519731:24000
Cullison loam, 0 to 1 percent slopes446236424357512zbdxne00519731:24000
Cullison mucky peat446325651003602ymc6ne03119951:24000
Cullison loam, 0 to 1 percent slopes446223041003592zbdxne03119951:24000
Cullison loam, 0 to 1 percent slopes44622222192772zbdxne07519731:24000
Cullison fine sandy loam, 0 to 1 percent slopes4461109417001151v23fne07920031:12000
Cullison mucky peat44639926686892ymc6ne09119611:24000
Cullison fine sandy loam, very rarely flooded4460122916988791v0tkne10119901:20000
Cullison mucky peat446385516988802ymc6ne10119901:20000
Cullison mucky peat44636122197062ymc6ne11119711:24000
Cullison mucky peat446347917002132ymc6ne11719661:31680
Cullison loam, 0 to 1 percent slopes446237717002122zbdxne11719661:31680
Cullison loam, 0 to 1 percent slopesT032A56313900212zbdxsd00720041:20000
Cullison mucky peatT033A12313900222ymc6sd00720041:20000
Cullison loam, 0 to 1 percent slopesT032A7013915402zbdxsd12119671:31680
Cullison mucky peatT033A2013970372ymc6sd12119671:31680
Cullison loam, 0 to 1 percent slopesT032A29525827572zbdxsd61320111:24000

Map of Series Extent

Approximate geographic distribution of the CULLISON soil series. To learn more about how this distribution was mapped, or to compare this soil series extent to others, use the Series Extent Explorer (SEE) application. Source: generalization of SSURGO geometry .