Aggregate lab data for the BROOKSTON soil series. This aggregation is based on all pedons with a current taxon name of BROOKSTON, and applied along 1-cm thick depth slices. Solid lines are the slice-wise median, bounded on either side by the interval defined by the slice-wise 5th and 95th percentiles. The median is the value that splits the data in half. Five percent of the data are less than the 5th percentile, and five percent of the data are greater than the 95th percentile. Values along the right hand side y-axis describe the proportion of pedon data that contribute to aggregate values at this depth. For example, a value of "90%" at 25cm means that 90% of the pedons correlated to BROOKSTON were used in the calculation. Source: KSSL snapshot . Methods used to assemble the KSSL snapshot used by SoilWeb / SDE
Pedons used in the lab summary:
Monthly water balance estimated using a leaky-bucket style model for the BROOKSTON soil series. Monthly precipitation (PPT) and potential evapotranspiration (PET) have been estimated from the 50th percentile of gridded values (PRISM 1981-2010) overlapping with the extent of SSURGO map units containing each series as a major component. Monthly PET values were estimated using the method of Thornthwaite (1948). These (and other) climatic parameters are calculated with each SSURGO refresh and provided by the fetchOSD function of the soilDB package. Representative water storage values (“AWC” in the figures) were derived from SSURGO by taking the 50th percentile of profile-total water storage (sum[awc_r * horizon thickness]) for each soil series. Note that this representation of “water storage” is based on the average ability of most plants to extract soil water between 15 bar (“permanent wilting point”) and 1/3 bar (“field capacity”) matric potential. Soil moisture state can be roughly interpreted as “dry” when storage is depleted, “moist” when storage is between 0mm and AWC, and “wet” when there is a surplus. Clearly there are a lot of assumptions baked into this kind of monthly water balance. This is still a work in progress.
Siblings are those soil series that occur together in map units, in this case with the BROOKSTON series. Sketches are arranged according to their subgroup-level taxonomic structure. Source: SSURGO snapshot , parsed OSD records and snapshot of SC database .
Select annual climate data summaries for the BROOKSTON series and siblings. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .
Geomorphic description summaries for the BROOKSTON series and siblings. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. Proportions can be interpreted as an aggregate representation of geomorphic membership. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Small Shannon entropy values suggest relatively consistent geomorphic association, while larger values suggest lack thereof. Source: SSURGO component records .
Soil series competing with BROOKSTON share the same family level classification in Soil Taxonomy. Source: parsed OSD records and snapshot of the SC database .
Select annual climate data summaries for the BROOKSTON series and competing. Series are sorted according to hierarchical clustering of median values. Source: SSURGO map unit geometry and 1981-2010, 800m PRISM data .
Geomorphic description summaries for the BROOKSTON series and competing. Series are sorted according to hierarchical clustering of proportions and relative hydrologic position within an idealized landform (e.g. top to bottom). Proportions can be interpreted as an aggregate representation of geomorphic membership. Most soil series (SSURGO components) are associated with a hillslope position and one or more landform-specific positions: hills, mountain slopes, terraces, and/or flats. The values printed to the left (number of component records) and right (Shannon entropy) of stacked bars can be used to judge the reliability of trends. Shannon entropy values close to 0 represent soil series with relatively consistent geomorphic association, while values close to 1 suggest lack thereof. Source: SSURGO component records .
Click a link below to display the diagram. Note that these diagrams may be from multiple survey areas.
Typical pattern of soils and underlying material in the Williamstown-Metea-Riddles association (Soil Survey of Pulaski County, Indiana; 2003).
Typical pattern of soils and underlying material in the Brookston-Odell-Corwin association (Soil Survey of Pulaski County, Indiana; 2003).
Typical pattern of soils and underlying material in the Riddles-Oshtemo association (Soil Survey of Elkhart County, Indiana).
Typical pattern of soils and underlying material in the Crosier-Brookston-Williamstown association (Soil Survey of Elkhart County, Indiana).
Typical pattern of soils and underlying material in the Riddles-Crosier-Oshtemo association (Soil Survey of St. Joseph County, Indiana).
Typical pattern of soils and underlying material in the Crosier-Brookston-Williamstown association (Soil Survey of St. Joseph County, Indiana).
Schematic cross section of west-central Carroll County showing soil series, parent material, native vegetation, and drainage. Roman numerals below each profile indicate drainage as follows: II, imperfect; IV, good; V, good to excessive; VI, excessive; VII, poor; and VIII, very poor (Soil Survey of Carroll County, Indiana; 1958).
Major soils in association 3 and their relationship to the landscape (Soil Survey of Delaware County, Indiana; 1972).
Major soils in association 4 and their relationship to the landscape (Soil Survey of Delaware County, Indiana; 1972).
Relationship of soils to topography and underlying materials in the Riddles-Crosby-Miami association (Soil Survey of Elkhart County, Indiana; 1974).
Major soil series in the county in relation to their topography and underlying material (Soil Survey of Fountain County, Indiana; 1966).
Topographical relationships between a few of the major soils in the county (Soil Survey of Pulaski County, Indiana; 1968).
Prairie soils that formed in loam till and adjoining soils that formed in outwash and lacustrine deposits (Soil Survey of Pulaski County, Indiana; 1968).
Pattern of soils and underlying material in the Miami-Riddles map unit (Soil Survey of Wabash County, Indiana; 1983).
Pattern of soils and underlying material in the Miami-Crosby map unit (Soil Survey of Wabash County, Indiana; 1983).
Pattern of soils and underlying material in the Crosby-Brookston-Crosier map unit (Soil Survey of Wabash County, Indiana; 1983).
Pattern of soils and underlying material in the Marlette-Capac-Metea association (Soil Survey of Allegan County, Michigan; March 1987).
Pattern of Capac, Marlette, and Colwood soils in association 5 (Soil Survey of Ingham County, Michigan; August 1979).
Typical pattern of soils and parent material in the Crosby-Brookston association (Soil Survey of Darke County, Ohio; August 1987).
Map units containing BROOKSTON as a major component. Limited to 250 records.
Approximate geographic distribution of the BROOKSTON soil series. To learn more about how this distribution was mapped, or to compare this soil series extent to others, use the Series Extent Explorer (SEE) application. Source: generalization of SSURGO geometry .