## Navigation## User login |
## Basic Simulation of Soil Profile Data in R via AQPSubmitted by dylan on Wed, 2012-12-19 18:59.
Something fun to play with before the new year: experimental code in aqp for simulating soil profile data from a single "template" profile. The basic idea: simulate horizon thickness data using a family of Gaussian functions with mean defined by horizon thickness values found in the template and standard deviation defined by the user. Larger Basic usage is demonstrated below, see package manual page for details. This function is only available in the version of library(aqp) # load sample data and convert into SoilProfileCollection data(sp3) depths(sp3) <- id ~ top + bottom # select a profile to use as the basis for simulation s <- sp3[3, ] # reset horizon names s$name <- paste('H', seq_along(s$name), sep='') # simulate 25 new profiles, using 's' and function defaults sim.1 <- sim(s, n=25) # simulate 25 new profiles using 's' and variable SD for each horizon sim.2 <- sim(s, n=25, hz.sd=c(1, 2, 5, 5, 5, 10, 2)) # plot par(mfrow=c(2,1), mar=c(0, 0, 0, 0)) plot(sim.1) mtext('SD = 2', side=2, line=-1.5, font=2, cex=0.75) plot(sim.2) mtext('SD = c(1, 2, 5, 5, 5, 10, 2)', side=2, line=-1.5, font=2, cex=0.75) # aggregate horizonation of simulated data # note: set class_prob_mode=2 as profiles were not defined to a constant depth sim.2$name <- factor(sim.2$name) a <- slab(sim.2, ~ name, class_prob_mode=2) # convert to long format for plotting simplicity library(reshape) a.long <- melt(a, id.vars=c('top','bottom'), measure.vars=levels(sim.2$name)) # plot horizon probabilities derived from simulated data # dashed lines are the original horizon boundaries library(lattice) xyplot(top ~ value, groups=variable, data=a.long, subset=value > 0, ylim=c(100, -5), type=c('l','g'), asp=1.5, ylab='Depth (cm)', xlab='Probability', auto.key=list(columns=4, lines=TRUE, points=FALSE), panel=function(...) { panel.xyplot(...) panel.abline(h=s$top, lty=2, lwd=2) }) ( categories: )
## Reply |